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SUMMARY 

A time-accurate, finite volume method for solving the three-dimensional, incompressible Navier-Stokes equations 
on a composite grid with arbitrary subgrid overlapping is presented. The goverping equations are written in a non- 
orthogonal curvilinear co-ordinate system and are discretized on a non-staggered grid. A semi-implicit, fractional 
step method with approximate factorization is employed for time advancement. Multigrid combined with intergrid 
iteration is used to solve the pressure Poisson equation. Inter-grid communication is facilitated by an iterative 
boundary velocity scheme which ensures that the governing equations are well-posed on each subdomain. Mass 
conservation on each subdomain is preserved by using a mass imbalance correction scheme which is second- 
order-accurate. Three test cases are used to demonstrate the method’s consistency, accuracy and efficiency. 
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1. INTRODUCTION 

The domain of most engineering and environmental flows is highly complex and irregular. One of the 
powerfid tools to tackle complex geometry is the use of a non-orthogonal body-fitted curvilinear grid. 
However, it is often difficult or inefficient to cover an irregular domain with a single grid and it is 
therefore necessary to use domain decomposition and composite grids. Moreover, with the increasing 
importance of parallel or distributed computation, the domain decompostion method proves a great 
advantage in achieving high computing performance. 

Figure 1 shows a composite grid which consists of three overlapping subgrids GI, G2 and G3. Two 
kinds of boundaries exist in the subgrids, namely the ‘physical boundary’ which encloses the physical 
domain and the ‘inter-grid boundary’ which lies in the interior of neighbouring subgrids. For example, 
in subgrid G2 (Figure 1) AB and CD are physical boundaries and BC and DA are inter-grid boundaries. 
The region enclosed by AFED is called the ‘overlapping zone’ between subgrids GI and Gz. 

Extensive work has been done on composite grid methods for solving compressible flows; see e.g. 
References 1 and 2 in which both overlapping and patching or touching subgrids have been used. The 
development of this technique in treating incompressible flows is more recent. In solving 
incompressible flows, overlapping subgrids are usually employed. Meakin and Street3 investigated 
the domain decomposition method and simulated flows in a model lake. They solved the 
incompressible Navier-Stokes equations implicitly and used S c h w a  iteration to achieve global 

CCC 0271-2091/95/050341-21 
0 1995 by John Wiley & Sons, Ltd. 

Received 9 October 1992 
Revised 30 July I994 



342 Y. ZANG AND R. L. STREET 

u 
Figure 1 .  A composite grid consiting of three overlapping subgrids 

convergence. Van der Wijngaart4 developed a general data structure for two-dimensional composite 
grids and used the modified staggered grid to solve steady flow problems. Stiiben and Trottenberg' and 
Henshaw ans Chesshire6 discussed composite multigrid methods for solving model PDEs. Hinatsu and 
Ferziger' explored the efficiency of different composite multigrid schemes using 1D and 2D model 
problems. Tu and Fuchs' investigated overlapping grids and multigrid methods in calculations of 
unsteady flows in IC engines. Berger and Oliger,' Caruso et a1." and McCormick and Thomas'' 
developed multidomain methods for adaptive grid applications. Perng and StreetI2 recently introduced 
a new method to obtain multiple-domain solutions for incompressible flows which updates the velocity 
field independently on each subgrid and solves the pressure field globally by sweeping through the 
subgrids. This procedure reduces the cost of computation significantly compared with conventional 
methods which iterate both the momentum and pressure equations through sub domain^.^ Their 
computations of flows in complex cavities and ducts showed good global consistency and accuracy. 
However, Perng and Street required that the grid points from different subgrids in the overlapping 
zone be coincident, which is difficult to realize when constructing a composite grid over irregular 
domains. 

Before presenting the objectives of the present work, we first give the definitions of several key 
terms which are to be used throughout this paper. We define that the solution on a composite grid is 
consistent if the difference between physical quantities obtained from overlapping subgrids at a fixed 
spatial point is of the same order as that of the overall solution method which includes discretization, 
solution and interpolation. In other words, if q1 and q1 are the calculated values of a physical quantity q 
on subgrids GI and G2, respectively, the solution on the composite grid consisting of GI and G2 is 
consistent if the following is true for all q: 

lqI(xi , t )  - q2(xi , t)I < E N O(l/Nm) 3 (1) 
where N is the number of grid points in one spatial dimension and m is the order of accuracy of the 
overall solution method. 

Since the fluid is of constant density and incompressible, the mass is conserved on a subgrid Gj  if 

ujn, dS = 0 , S, 
where dGi represents the boundary of Gi, uj is the velocity and nj is the outward unit normal of dGj. 

We say that an interpolation scheme is conservative if 

where dGP and dGf denote the physical and inter-grid boundaries of subgrid Gi, respectively and uf is 
the velocity on the inter-grid boundary which is interpolated from neighbouring subgrids. The 
interpolation scheme is non-conservative if equation (3) is not satisfied. 
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In spite of the significant progress which has been achieved in solving incompressible flows on 
composite grids, important problems which have not been fdly resolved still exist, such as those 
related to solution consistency, inter-grid boundary condition, mass conservation and coservative 
versus non-conservative interpolation. These problems lead to the following questions. 

How can solution consistency be achieved on a general composite grid with arbitrary subgrid 
overlapping? 
What inter-grid boundary condition should be used? 
How should mass conservation on a subdomain be satisfied? 
What is the effect of mass imbalance due to the non-conservative interpolation scheme on the 
convergence of the composite multigrid method? 

The present work is an attempt to address these questions. It extends the work of Perng and Street'* 
to the case of general composite grids which do not require coincident grid points in the overlapping 
zone. Moreover, the solver is written in a non-orthogonal curvilinear co-ordinate system and is based 
on a non-staggered grid. Problems regarding the well-posedness of the governing equations on a 
general composite grid, the consistency of the global solution and the accuracy and efficiency of the 
composite multigrid method are discussed. 

The governing equations are given in Section 2.  In Section 3 we briefly describe the basic solution 
method. The composite grid procedure is detailed in Section 4. Results of three test cases are given in 
Section 5 .  Section 6 presents some concluding remarks. 

2.  GOVERNING EQUATIONS 

The governing equations are the constant viscosity, constant density, three-dimensional, incompres- 
sible Navier-Stokes equations 

where i, j = 1, 2, 3, ui are the Cartesian velocity components, p is the pressure divided by the fluid 
density and v is the kinematic viscosity. The above equations are transformed into the general 
curvilinear co-ordinate system in strong conservation law formI3 as 

where m = 1, 2, 3, the flux is 

a(J- 'u i )  aFim +-- - 0 ,  
at at, (7) 

Urn is the volume flux (the contravariant velocity multiplied by the inverse of the Jacobian or the 
volume of the computational cell) normal to a surface of constant t,, J- is the inverse of the Jacobian 
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or the volume of the cell and g"" is the contravariant metric tensor. Accordingly, 

J-' = det (2) , 

3. BASIC NUMERICAL METHOD 

In this section we briefly describe the basic solution method on a single grid. The details are presented 
in Reference 14. The governing equations are discretized using the finite volume method on a non- 
staggered grid. The pressure and the Cartesian velocity components ui are defined at the centre of the 
control volume, while the volume fluxes Um are defined on the corresponding faces (see Figure 2). The 
Adams-BashfortWCranl-Nicolson scheme" is used to advance the governing equations semi- 
implicitly in time. The discretized equations are 

where SlS&,, denotes the discrete finite difference operator in computational space, superscripts 
represent the time step, Ci is the convective term, Ri is the discrete operator for the pressure gradient 
terms and DE and DI are discrete operators representing the explicitly treated off-diagonal viscous 
terms and the implicitly treated diagonal viscous terms respectively. 

All the spatial derivatives are approximated with second-order central differences, with the 
exception of the convective terms which are discretized using a variation of QUICK.I6 

Application of the fractional step method to (1 3) leads to the following predictor-corrector solution 
procedure. 

1. Predictor: 

Y t  
Ix Physical space Computational space 

Figure 2. A control volume of the non-staggered grid and the co-ordinate mapping in two dimensions 
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2. Corrector: 

Where I is the identity matrix and u; is called the intermediate velocity. The variable 4 is related to the 
pressure p by 

Ri(p) = ( J-' -- DI ) ;y?) - ; 
hereafter q5 is referred to as the 'pressure'. 

(LHS) of (14) is factorized into three tridiagonal matrices as 
Equation (14) is solved with the approximate factorization technique"*'* in which the left-hand side 

(17) 
k - j - y D 1 ) ( I ~ D 2 ) ( 1 - ~  At At At D,)(uY-u:)=RHSof(14), 

where Dk(k = 1, 2, 3) is the discrete one-dimensional diagonal viscous operator and 
DI = Dl + D2 + D3. After the corrector step (1 5 )  the volume flux is updated with 

where = S'(S<,/Sx,)u,t which is defined on the cell faces is called the intermediate volume flux. 
To calculate V,, the value of u; which is defined at the cell centre is first interpolated onto the cell 
faces with a third-order quadratic upwind interpolation scheme similar to that used in QUICK. After u; 
is obtained on the cell face, W, is calculated according to its definition above. 

Before u:" can be obtained from (15) or q+' from (18), we need to solve for 4n+' from the 
following pressure Poisson equation, which is derived by substituting equation (1 8) into the continuity 
equation (12): 

The above equation is valid for interior cells. For the cells adjacent to a physical boundary the 
volume flux Urn on the boundary is known from the boundary condition (zero on a solid wall). 
Therefore this term in equation (12) is not replaced by (1 8); instead, the prescribed boundary condition 
is used. For example, for the control volume adjacent to the 5 = 0 boundary (Figure 3) the form of the 
pressure Poisson equation is (in two dimensions) 

On a physical boundary the second term on the LHS of (20), q,&\, is obtained from the prescribed 
boundary condition. We note that there are no gradient terms of 4 on and normal to the boundary on 
the RHS of the above equation. 

For a non-orthogonal grid the value of 4 outside the boundary may need to be computed. For 
example, when is calculated from equation (18), 4s at the fictitious points i=l are needed if 
central differencing is employed. In this work they are calculated as follows. We first obtain the 
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Inter-grid boundary 
of su/bgrid Q 1 

Figure 3. Sketch of the grid near an inter-grid boundary 

gradient of 4 on a given boundary by applying the normal momentum equation (1 8) on that boundary. 
The value of Urn in (1 8) is extrapolated from the interior. The value of 4 outside the boundary can then 
be calculated from the normal gradient. It has been shown'' that using the normal momentum equation 
provides the appropriate boundary condition for the pressure. 

is obtained in the iterative process in which $n+' is calculated. This is discussed in Section 4.1. 
If the boundary at i = is an inter-grid boundary, then is unknown a priori. In this case 

4. COMPOSITE GRID METHOD 

To solve the governing equations on a composite grid, we employ a scheme similar to that of Perng and 
Street. l 2  Their explicit scheme differs from conventional composite grid methods in that it involves 
inter-grid iteration only at the stage where the pressure Poisson equation is solved. In the present semi- 
implicit method, in addition to the above process for the pressure, iterations may also be needed when 
the factorized matrix is solved in the predictor step (1 7), since ut is unknown on inter-grid boundaries. 
The basic steps of the composite grid method are as follows. 

(a) Predictor: obtain uf by solving ( 1  7); interpolate ut onto the cell faces and compute Vm. 
(b) Pressure: iterate (19) through all the subgrids to obtain a globally converged field of dn+'. 
(c) Corrector: update the velocity ua' ' from (1 5) and the volume flux v",' ' from (1 8) on each 

When the above solution procedure is applied to an artibrarily overlapping composite grid, several 
issues arise. First, the solutions from different subgrids must be consistent with each other according to 
the definition given in Section 1 (equation (1)). Inconsistency may occur if improper inter-grid 
boundary conditions are used. Second, mass conservation needs to be preserved on each subgrid 
(equation (2)). This is equivalent to the satisfaction of the compatibility condition for the pressure 
Poisson equation. Third, the efficiency of the composite multigrid method depends on the above two 
conditions. These issues are discussed in the following subsections. 

subgrid independently. 

4.1. Inter-grid boundary conditions 

In order to obtain a consistent solution on an arbitrarily overlapping composite grid, data transfer on 
the inter-grid boundaries needs to be properly treated. In the present semi-implicit formulation two 
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types of inter-grid boundary conditions are required. One is the boundary value of u; in the predictor 
step. On physical boundaries we calculate uf using the method developed by LeVeque and Oligeq2' 
which requires that 

At 
J -  

ur = uy - 7 R;(@") + O(A?) . 

On inter-grid boundaries the value of uf may still be obtained from equation (21) or by a linear 
extrapolation in time. These schemes, while maintaining second-order accuracy and avoiding 
iterations, were found to give slight inconsistencies in u; + I .  To overcome this difficulty, we solve 
equation (17) iteratively through subgrids. The value of u; on inter-grid boundaries is interpolated 
from neighbouring subgrids with uf at the previous time step as its initial guess. Typically a couple of 
iterations are sufficient to produce a consistent u;+ I .  This iteration is relatively inexpensive, because 
the right-hand side of (17) is fixed in the iteration and, in addition, the iteration is only needed in the 
direction where an inter-grid boundary exists. 

The second type of inter-grid boundary condition is of the volume flux Urn+ ' when the pressure 
Poisson equation is solved on grid cells adjacent to an inter-grid boundary (equation (20)). As pointed 
out at the end of Section 3, on an inter-grid boundary rSt,+ ' is not known a priori. The usual practice to 
obtain inter-grid boundary conditions for the pressure Poisson equation is to interpolate u; or Vrn from 
neighbouring subgrids to compute the source terms on the RHS of equation (19) while using some 
type of pressure boundary conditi~n'?'~ for the pressure gradient terms on the left-hand side. Perng and 
Street" discussed the choices of pressure boundary conditions for the case of subgrids with coincident 
grid points. They suggested that either the pressure value or the normal pressure gradient may be used 
as the boundary condition. While this is true for the cases in their study, numerical tests carried out by 
the present authors showed that when subgrids had non-coincident grid points, the pressure gradient 
boundary condition still worked, while the use of the pressure value produced inconsistent solutions. 
The reason lies in the well-posedness of the governing equations and we see below that the pressure 
gradient boundary condition follows naturally from this view. 

It is known that the incompressible Navier-Stokes equations are well-posed in a given domain if the 
velocity is prescribed on the boundary of that domain; no pressure boundary condition is required .19 
On a composite grid, in order to achieve solution consistency, it is vitally important that the governing 
equations be well-posed on each subdomain. This condition is satisfied if velocities on inter-grid 
boundaries of that subdomain can be determined (velocities on physical boundaries are known and 
imposed). To achieve this, we introduce the iterative boundary velocity scheme to iteratively update 
volume fluxes Urn+ ' in the process of solving for the pressure. Consider again the example given in 
Figure 3 and equation (20). If i = $ is an inter-grid boundary, then the second term on the LHS of (20), 
qE,>. is unknown. However, since the point (4,j) is in the interior of a neighbouring overlapping 
subgnd, U$2, and the pressure gradients at the same location can be interpolated from that subgrid. 
Thenqi,:. can be obtained by applying the normal momentum equation on the boundary i = 4. In 
general, after the (p - 1)th pressure iteration, Urn at the pth iteration, Um+'J', on the inter-grid 
boundary 5, is determined by 

where the subscript I denotes that the value is interpolated from neighbouring subgrids and the 
superscript (n + 1, p)  denotes the pth pressure iteration at time step n + 1. The value of q+ ',P is then 
used in the source term of equation (19) to calculate c#f+lp. 

When the pressure converges, urn+ l i p  converges to Urn+ I. This ensures that the proper velocity 
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boundary condition is prescribed on all the boundaries of the given subdomain, physical as well as 
inter-grid ones. As a result the governing equation is well-posed on each subgrid. 

We see from equation (22) that the present boundary velocity scheme produces the same effect as 
that of interpolating Urn and using the gradient as the boundary condition for pressure. The use of the 
pressure value as boundary condition is inconsistent with equation (22) and as a result produces 
inconsistent solutions. 

4.2. Mass conservation 

Conservation of mass is a very important property in the numerical computation of incompressible 
flows. The complication with a composite grid is that it is very difficult to construct a conservative 
Interpolation scheme in a general non-orthogonal co-ordinate system. Meakin2’ employed a non- 
conservative interpolation scheme and utilized a mass imbalance correction (MIC) scheme to enforce 
mass conservation. In an MIC scheme the amount of mass residual on a given subgrid due to the non- 
conservative interpolation is subtracted out to exactly satisfl mass conservation. Meakin stated that the 
convergence rate was accelerated by 10% when the MIC was applied in every inter-grid iteration. 
However, Meakind did not evaluate the effect of his MIC scheme on the overall accuracy of the 
numerical method. 

In the present work we use third-order Lagrangian biquadratic interpolation to transfer data between 
subgrids. This interpolation scheme is non-conservative; mass conservation in a subdomain based on 
the interpolated velocity on the inter-grid boundaries is not guaranteed if no correction is applied. As a 
result of the mass imbalance the compatibility condition of the pressure Poisson equation is not 
satisfied and thus its convergence is limited at some level which is determined by the interpolation 
error. During the iteration of solving for the pressure, as the residual mass approaches this limit, the 
rate of convergence may become very slow and the performance of the multigrid method deteriorates. 
To avoid this undesirable behaviour, we employ an MIC scheme to ensure that mass is exactly 
conserved in each subdomain so that the fast convergence of the multigrid is preserved. 

In the present formulation the correction is made to the volume flux after it is computed from 
equation (22). The magnitude of the correction is proportional to the local volume flux according to the 
formula 

- m  

w h m  & is the global mass imbalance and S is the sum of the absolute value of the volume fluxes over 
all inter-grid boundanes. They are defined as 

where XI is the sum over all the inter-grid boundaries in a given subgrid, em is the unit vector in the 
direction of the co-ordinate line tm and n is the outward normal unit vector of the inter-grid boundary 
surface. 

According to Henshad* and Oliger,23 the order of accuracy of the interpolation scheme should be at 
least one higher than that of the discretization in order to preserve the overall accuracy of the solution 
scheme. Since our discretization is second order and the interpolation scheme is third-order, the above 
criterion is satisfied. In addition, it can be easily shown that the MIC scheme is second-order-accurate 
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(Appendix). Therefore the second-order accuracy of the overall solution method is preserved. This fact 
is also demonstrated by numerical tests in Section 5. 

4.3. Multigrid on composite grid 

Composite multigrid methods have been investigated extensively. Stiiben and Trottenberg’ and 
Henshaw and Chessire6 solved model elliptic PDEs. Hinatsu and Ferziger7 have carried out nwyerical 
experiments to test two kinds of composite multigrid method, namely, in their terminology, the 
complete composite multigrid (CCMG) method, which transfers data among subgrids at all multigrid 
levels, and the incomplete composite multigrid (ICMG) method, which only transfers data at the finest 
grid level. While Stiiben and Trottenberg demonstrated a good convergence rate of a CCMC method, 
the results of Hinatsu and Ferziger with a ID model equation and the 2D Poisson equation showed that 
CCMG did not converge faster than ICMG. Tu and Fuchs’ used multigrid for both momentum and 
continuity equations and reported good convergence behaviour. Perng and Street’* used an ICMG 
method in their domain decompostion procedure and showed a good convergence property. 

We extended the composite multigrid method of Perng and Street12 to general composite grids with 
arbitrary subgrid overlapping. The basic procedure is to apply the multigrid defect correction scheme 
(MG-CS) within each subgrid and sweep through subgrids globally until convergence is achieved. The 
present strategy is similar to the ICMG method of Hinatsu and Ferziger’ in which data communication 
between subgrids only occurs at the finest grid level. 

Our choice of an ICMG instead of a CCMG strategy was based on considerations of overall 
efficiency and robustness of the unsteady flow solver. In an ICMG method, because inter-grid data 
transfer only occurs at the finest grid level, it is straightforward to impose the boundary condition at 
coarser grid levels in a defect correction scheme, since the boundary condition is the same as in a 
single-grid case. On the other hand, if a CCMG method is employed in which data are transferred at all 
multigrid levels, it is difficult to implement the defect correction scheme on inter-grid boundaries. The 
reason is that at a coarser grid level the defect correction scheme calculates the error of the quantity on 
the grid one level finer. Since the error on a subgrid is not a physical quantity and depends on the 
numerical property of the particular subgrid, it is not likely to correlate with the error of a neighbouring 
subgrid of disparate property. Although an ‘exact’ scheme was outlined by Hinatsu and Ferziger7 for 
computing the inter-grid boundary condition in a CCMG which can be used in a multidimensional 
problem with subgrids of disparate geometrical properties, it involves computing and storing quantities 
of all the finer grids at any given grid level and leads to a tedious procedure. Thus in a CCMG, instead 
of the defect correction scheme, the less efficient full approximate scheme (FAS) may have to be used.24 

A more serious issue with the CCMG method is that the overlapping at the inter-grid boundary 
between two neighbouring subgrids diminishes when the mesh is continuously coarsened.6 This makes 
a CCMG method less robust in a general composite grid consisting of overlapping curvilinear or 
irregular subgrids. Henshaw and Chesshire6 utilized a sophisticated grid generation routine to produce 
coarser grids from the finer grid. They increased the area of overlapping when the grid is coarsened to 
maintain the number of grid points in the overlapping zone as a constant. Although they demonstrated 
favourable results using this scheme, the number of multigrid levels was limited by the amount of 
overlappping, since, as the grid continues to be coarsened, the area of overlapping at an inter-grid 
boundary may become so large that it extends itself outside the physical domain. Other remedies could 
be employed, such as retaining layers of finest grids near the inter-grid boundary, moving the inter-grid 
boundary at every multigrid level or using large overlapping regions. The effects of these special 
treatments on the accuracy and convergence of the solution method are generally negative and not fully 
assessed. With an ICMG method this problem of intergrid overlapping does not exist and the number 
of multigrid levels is only restricted by the number of grid points in the subgrid. 
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It is acknowledged that the CCMG method may be more effective in solving certain types of 
problems which require many iterations to converge. In the present unsteady flow solver, however, the 
convergence of the pressure Poisson equation at every time step typically requires only a few iterations. 
The use of an ICMG method appears to be more robust and cost-effective. A comprehensive 
comparison of the efficiency and applicability of the ICMG and CCMG in solving different types of 
flow problems, including both steady and unsteady situations, would be useful. Such an extensive 
effort, is unfortunately, beyond the scope of our present investigation. 

We employ the V-cycle strategy in the multigrid within each subgrid. The adaptive W-cycle 
method25 was also implemented and found to yield essentially the same convergence rate as the V- 
cycle, On each grid level within a subgrid the number of smoothing operations is fixed at typically two 
or three. We employ the four-colour line-by-line Gauss-Seidel (FC-LGS) scheme as the smoother.26 
This scheme is fully vectorizable and at the same time retains the good smoothing property of the 
original line-by-line Gauss-Seidel method. Both the restriction and interpolation operations are 
trilinear and are carried out in the computational space. 

In the global sweep Meakin and Street3 have shown that the more frequently the iteration is switched 
between subgrids, the faster is the overall convergence rate. Following this criterion, we perform only 
one V-cycle on each subgrid before switching to the next one. This ensures that information is 
transferred between subgrids as often as possible. 

The present composite multigrid (CMG) procedure for the pressure Poisson equation is summarized 
as follows. 

(a) At the pth iteration calculate v",' 
(b) Correct v"," ',P using equation (23) to enforce mass conservation. 
(c) Perform one multigrid V-cycle on this subgrid. 
(d) Move to the next subgrid and perform steps (aHc) until all the subgrids are swept through. 
(e) Repeat steps (aHd) until global convergence is achieved. 

Global convergence of the pressure Poisson equation at each time step is achieved when the 

on a given subgrid using equation (22). 

following are satisfied: 

where eP is the averaged non-dimensional residual of the pressure Poisson equation and d 4  is the 
averaged relative change in the pressure values on the inter-grid boundaries; E; and d@ are their 
corresponding threshold values, which are typically taken as 1 OP5-l OK6. 

The stability of the numerical method is restricted by the Courant condition. The Courant number is 
defined as 

The stability condition of the present method requires that 

CFL,, < c N O( 1) , (29) 

where CFL,, is the maximum value obtained from (28) in the computational domain. Numerical 
experiments have shown that C < 1 yields stable solutions. The present semi-implicit method removes 
the restrictive viscous stability limit. The inviscid Courant condition is not significant for unsteady 
flows, in which the time accuracy of the solution is required. 
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The computer code is fully vectorized. The typical CPU time per grid node per time step on a single 
processor of a Cray Y-MP is about 30 ps. The iterative solution of the pressure Poisson equation is the 
most CPU-intensive part of the solution procedure, consuming over 50% of the total CPU requirement 
at each time step. 

5 .  RESULTS 

We chose three test cases to evaluate the consistency, accuracy and efficiency of the present numerical 
method. The first has an analytical solution and is used to check the overall order of accuracy as a 
function of grid refinement. Then two and three subgrids are used in calculating two-dimensional flows 
in a lid-driven polar cavity. By use of this example, the issues regarding the efficiency of CMG in 
solving the pressure Poisson equation, the effect of the extent of grid overlapping and the order of 
accuracy of the MIC scheme are investigated. Finally, upwelling flow in a rotating container with a 
conical bottom is computed to demonstrate the efficacy of the method in treating non-orthogonal grid 
systems. We note that examples 1 and 3 with cylindrical geometry are solved routinely with the present 
composite grid technique, while with a polar co-ordinate system one has to invest heavily in special 
programming to account for the mathematical singularity at the co-ordinate origin. 

5. I .  Spin-down jlow in a circular cylinder 

We consider the time-dependent flow of a spin-down to rest. Initially the fluid is in solid body rotation 
with a two-dimensional circular cylinder at an angular velocity Q. At time to the cylinder is suddently 
brought to rest. The fluid slows down as a result of the drag of the wall. The analytical solution of the 
azimuthal velocity is:27 

where I,, denotes the nth root of the first-order Bessel function of the first kind, J1,  R is the initial 
angular velocity, R is the cylinder radius, v is the kinematic viscosity and t is time. 

Figure 4 is a schematic diagram of the flow domain and the overlapping composite grid which 
consists of an outer annular grid with a periodic boundary and an inner rectangular grid. Figure 5 
shows the azimuthal velocity as a function of radius and time. A uniform (34 x 34, 18 x 18) x 3 
two-subgrid composite grid was used. The computed solution agrees well with the exact solution. In 
addition, the agreement of the solutions from two subgrids in the overlapping zone demonstrates the 
consistency of the present method. The maximum relative error scaled by the maximum velocity of the 
computed solution at the non-dimensional time tdR2 of 0.005 is plotted in Figure 6 as a function of 
mesh refinement. The CFL number was kept fixed. The slope of approximately - 2 demonstrates the 

boundary 

Subgrid # 1 

Figure 4. Domain and boundary condition for the spin-down flow to rest in a two-dimensional circular cylinder 
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r / R  

velocity profiles of the spin-down flow. Curves are from the analytical solution 
present computation. G1, component grid 1; G2, component grid 2 

Figure 5 .  Azimuthal and symbols are from the 

fact that the overall accuracy of the method, including the discretization, the interpolation and the MIC 
scheme, is second-order in both space and time. 

5.2. Lid-driven polar cavity 

The two-dimensional flow in a lid-driven polar cavity at a Reynolds number of 350, based on the lid- 
velocity and the radius of the inner wall, was computed. The decomposed domain and the two- 
component composite grid are shown in Figure 7. The velocity profiles along the line of symmetry are 
plotted in Figure 8. The solution which was obtained on a non-uniform (34 x 50, 34 x 66) x 3 two- 
subgrid composite grid is compared with the experimental and numerical data of Fuchs and TillmarkZ8 

Figure 6. Maximum relative error of ug as a function of mesh refinement for the decaying vortices flow. N is the number of grid 
points in each dimension ( fv /R2 = 0.005) 
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(b) 
Figure 7. (a) Decomposed domain and (b) two-component composite grid for the flow in a lid-driven polar cavity 
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Figure 8. Comparison of the radial and azimuthal velocity profiles u, and ug respectively along the radial line of symmetry 
(Re = 350). Symbols are from Reference 28: 0, ue, experiment; 0, u, experiment; m, ug, computation; 0, u, 

computation. Cwes :  - - -, present single grid; -, present composite grid 
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(4 (b) 

Figure 9. Steady state streamlines of the lid-driven flow in a polar cavity: (a) composite grid solution; (b) single-grid solution 

and also with a 66 x 66 x 3 single-grid solution employing the present method. The averaged relative 
error scaled with the lid velocity between the present composite grid and single-grid solutions is below 
0.5%. Good agreement is also found between the present and Fuchs and Tillmark’s numerical 
solutions. The discrepancy between the numerical and experimental data may be attributed to three- 
dimensional effects in the experiment. 

In another case the polar cavity is decomposed into three subdomains (Figure 9(a)). The streamlines 
and vorticity contours at the steady state from the composite grid (Figures 9(a) and 10(a)) and single- 
grid (Figures 9(b) and 1 O(b)) solutions are compared. The composite grid solution accurately predicts 
the size and strength of both the primary and secondary eddies. The vorticity is shown because it is a 

Figure 10. Steady state vorticity contours of the lid-driven flow in a polar cavity: (a) composite grid solution; (b) single-grid 
solution 
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Figure 11. Residual of the pressure equation for the polar cavity flow at the first time step: $, residual of the pressure equation; 
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points including the fictitious points 

more stringent measure of solution consistency. We can see that the vorticity contours are connected 
smoothly through inter-grid boundaries (Figure 1 O(a)). 

The flow whose domain is decomposed into two subgrids is used to investigate several important 
properties of the composite grid method. The efficiency of CMG in solving the pressure Poisson 
equation is demonstrated in Figure 11, in which the typical convergence behaviour is shown. The 
multigrid scheme with n levels is denoted as ‘MGn’ in the legend and ~p is the residual of the pressure 
Poisson equation. An optimized overrelaxation value of 1 a 7  was used in the point SOR iteration. The 
convergence of the multigrid on a single grid is also shown for comparison. One working unit is 
defined as one SOR iteration on the finest grid level. We see that CMG is much superior to SOR in 
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Figure 12. Effect of grid overlapping on multigrid convergence. MOP denotes the minimum number of overlapping grid points 



356 Y. ZANG AND R. L. STREET 

--8- Id. Grid 1 
-4- lel, Grid 2 
+S, Grid 1 
&S, Grid2 

N 
Figure 13. Absolute value of the dimensionless global mass imbalance E and sum of the absolute values of the volume flux S as 

hct ions  of mesh refinement 

terms of convergence rate, Neither CMG nor SOR is very sensitive to the size of the grid. The 
convergence of CMG is exponential and only about twice slower than MG-CS on a single grid. We 
note that the convergence behaviour in Figure 11 was obtained on non-orthogonal and highly stretched 
grids, which demonstrates the efficiency and robustness of the present method. 

The effect of the extent of grid overlapping on the convergence of CMG is also investigated. The 
convergence of three cases, which have corresponding minimum-overlapping points (MOPS) of 3, 4 
and 5, is shown in Figure 12. The convergence is faster as the grid overlapping increases. This is 
consistent with the findings of Oliger et al.29 and is thought to be a property of the global iteration 
through subgrids. 

The behaviour of the MlC scheme is investigated by plotting E, and S in equations (24) and (25) 
respectively, non-dimensionalized by the appropriate length and time scales, as a hnction of mesh 
refinement (Figure 13). In all cases the flow was integrated to 1 s from start-up and CFL was kept 
fixed. We see that the value of S is essentially independent of grid size while EV decreases with grid 
size, following a slope of approximately -2. This shows that the ratio &IS, and thus the correction 
made to Wm+ lip in equation (23), is of second order, which again confirms that the MIC scheme does 
not degrade the second-order accuracy of the overall method. 

5.3. Upwelling flow in a rotating axisymmetric container 

Figure 14 shows the vertical geometry of the flow domain and the boundary conditions of the 
upwelling flow. The outer boundary of the container consists of a small vertical wall and a conical 
bottom. This was the geometry used in a previous experimental laboratory investigation of coastal 
upwelling flows3' The fluid and the container are initially in solid body rotation at an angular velocity 
R. At time t = 0 the top lid begins to rotate at A l l  in the opposite direction relative to the rotating 
container. Because of the Coriolis effect, the fluid near the top surface is driven towards the centre of 
the container. A meridional circulation is then generated and the bottom fluid is upwelled to the top 
surface. We decompose the flow domain into two subdomains, which, in a horizontal plane, is similar 
to the decomposition used in Section 5.1 (Figure 4). The outer grid contains 34 x 34 x 34 grid points 
and the inner grid consists of 14 x 14 x 34 points. The grid points are clustered near solid boundaries. 
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-- Subgrid # 1 -. 

The evolution of the flow is shown in Figures 15(a)-15(c), where the streamlines in a vertical cross- 
section through the central axis are plotted. The vertical lines in the figures are boundaries of the 
subdomains. The Reynolds number based on the lid velocity and the maximum radius of the container 
is 270. The evolution of the flow is determined by the spin-up time scale3’ 

d 
ts = - 

(YR)1’2 ’ 

( c )  

Figure 15. Streamlines in a vertical cross-section through the axis of the container: (a) rlr, = 0.1; (b) r/ts = 0.3; (c) rlr. = 3 
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Figure 16. Velocity field in a horizontal plane near the top lid (rhs = 3) 

where d is the average depth of the container, v is the kinematic viscosity of the fluid and SZ is the 
angular velocity of the container. 

At f/ts = 0.1 (Figure 15(a)) the Ekman layer is formed at the top lid by the Coriolis force, where fluid 
moves towards the central axis. Mass conservation forces the fluid to return to the outer wall in the 
boundary layer on the sloping bottom. At this time the interior flow is not affected by rotation and is 
mainly driven by the requirement of mass conservation. At t/fs = 0.3 (Figure 15(b)) rotation has begun 
to affect the interior flow and the streamlines are curved to adjust to the Coriolis force. At f/fs = 3 
(Figure 15(c)) the entire flow is dominated by rotation. In the interior the streamlines are vertical and 
the gradient in the vertical direction vanishes. We see that in all three cases the streamlines are 
connected smoothly in the overlapping zone of the subdomains, which shows the consistency of the 
present method on a non-orthogonal grid. Figure 16 shows the velocity vector field in the horizontal 
plane at the peak of the top Ekman layer at f/fs = 3. The grid boundaries are also shown. Consistency of 
the composite grid solution is again demonstrated. 

6. CONCLUSIONS 

A numerical method is developed to solve the three-dimensional incompressible Navier-Stokes 
equations on a composite grid with arbitrary subgrid overlapping. The iterative boundary velocity 
scheme which is developed in the present work satisfies the condition of well-posedness and is crucial 
in order to achieve the consistency of solutions in arbitrarily overlapping grids. The composite 
multigrid (CMG) method together with the mass imbalance correction (MIC) scheme shows an 
excellent convergence rate when solving the pressure Poisson equation. The overall solution method is 
second-order in both space and time. The test results show that the composite grid solutions have an 
accuracy comparable with that of the single-grid solutions with similar grid size. 
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APPENDIX: ORDER OF ACCURACY OF THE MIC SCHEME 

The global mass conservation on a subdomain is enforced by the mass imbalance correction (MIC) 
scheme given in equations (23)-(25). They are repeated here: 

where Ui+')' denotes the volume flux at the lth pressure iteration at time step n + 1, Ui+') '  is the 
volume flux after the correction, E, is the global mass imbalance and S is the sum of the absolute values 
of the volume fluxes over all inter-grid boundaries; 

where 6Qi denotes all the inter-grid boundaries of the subdomain under consideration, em is the unit 
vector in the direction of the co-ordinate line lm and n is the outward unit vector normal to the surface 
of the inter-grid boundary. 

The Cartesian velocity components are interpolated from neighbouring subdomains to compute the 
volume flux. In the following we denote the exact solution with a subscript 'e'. Since the discretization 
is second-order-accurate and the interpolation is third-order-accurate, the interpolated Cartesian 
velocity is second-order-accurate, i.e. 

u;+ 'J  = (u;+'),+o(&) , (33) 

where 1 is the iteration number and Ax denotes the grid spacing in the physical space. The volume flux 
is 

and since 

we have for the volume flux 

(35) 

(36) 
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Substituting equation (36) into equation (3 l), we have 

n - em 
= p j i T q 7  

since the exact solution satisfies mass conservation. Because in three dimensions a sum over a surface 
is proportional to the square of the number of grid points in each dimension 

where N is the number of grid points in each space dimension, we obtain 

On the other hand, the absolute value of the sume of the boundary volume fluxes is 

Substituting equations (39) and (40) into equation (30), we have 

so that 

The above equation shows that the MIC scheme is second-order-accurate. 
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